CodingTest

[이것이 코딩 테스트다 with Python] 23강 퀵 정렬

nineDeveloper 2021. 1. 4. 21:34
728x90

https://www.youtube.com/watch?v=EuJSDghD4z8&list=PLVsNizTWUw7H9_of5YCB0FmsSc-K44y81&index=23

 

퀵 정렬

  • 기준 데이터를 설정하고 그 기준보다 큰 데이터와 작은 데이터의 위치를 바꾸는 방법이다
  • 일반적인 상황에서 가장 많이 사용되는 정렬 알고리즘 중 하나이다
  • 병합 정렬과 더불어 대부분의 프로그래밍 언어의 정렬 라이브러리의 근간이 되는 알고리즘이다
  • 가장 기본적인 퀵 정렬은 첫 번째 데이터를 기준 데이터(Pivot)로 설정한다

퀵 정렬 동작 예시

  • [Step 0] 현재 피벗의 값은 '5'이다. 왼쪽에서부터 '5'보다 큰 데이터를 선택하므로 '7'이 선택되고
    오른쪽에서부터 '5'보다 작은 데이터를 선택하므로 '4'가 선택된다. 이제 이 두 데이터의 위치를 서로 변경한다

  • [Step 1] 현재 피벗의 값은 '5'이다. 왼쪽에서부터 '5'보다 큰 데이터를 선택하므로 '9'가 선택되고
    오른쪽에서부터 '5'보다 작은 데이터를 선택하므로 '2'가 선택된다. 이제 이 두 데이터의 위치를 서로 변경한다

  • [Step 2] 현재 피벗의 값은 '5'이다. 왼쪽에서부터 '5'보다 큰 데이터를 선택하므로 '6'이 선택되고
    오른쪽에서부터 '5'보다 작은 데이터를 선택하므로 '1'이 선택된다. 단, 이처럼 위치가 엇갈리는 경우 '피벗'과
    '작은 데이터'의 위치를 서로 변경
    한다

  • [분할 완료] 이제 '5'의 왼쪽에 있는 데이터는 모두 5보다 작고, 오른쪽에 있는 데이터는 모두 '5'보다 크다는
    특징이 있다. 이렇게 피벗을 기준으로 데이터 묶음을 나누는 작업을 분할(Divide)이라고 한다

  • [왼쪽 데이터 묶음 정렬] 왼쪽에 있는 데이터에 대해서 마찬가지로 정렬을 수행한다

  • [오른쪽 데이터 묶음 정렬] 오른쪽에 있는 데이터에 대해서 마찬가지로 정렬을 수행한다
    • 이러한 과정을 반복하면 전체 데이터에 대해서 정렬이 수행된다


퀵 정렬이 빠른 이유: 직관적인 이해

  • 이상적인 경우 분할이 절반씩 일어난다면 전체 연산 횟수로 O(NlogN) 를 기대할 수 있다
    • 너비 X 높이 = 𝑁 × 𝑙𝑜𝑔𝑁 = 𝑁𝑙𝑜𝑔𝑁


퀵 정렬의 시간 복잡도

  • 퀵 정렬은 평균의 경우 O(NlogN) 의 시간 복잡도를 가진다
  • 하지만 최악의 경우 O(N²) 의 시간 복잡도를 가진다
    • 첫 번째 원소를 피벗으로 삼을 때, 이미 정렬된 배열에 대해서 퀵 정렬을 수행하면 어떻게 될까?


퀵 정렬 소스코드: 일반적인 방식 (Python)

array = [5, 7, 9, 0, 3, 1, 6, 2, 4, 8]

def quick_sort(array, start, end):
    if start >= end: # 원소가 1개인 경우 종료
        return
    pivot = start # 피벗은 첫 번째 원소
    left = start + 1
    right = end
    while(left <= right):
        # 피벗보다 큰 데이터를 찾을 때까지 반복 
        while(left <= end and array[left] <= array[pivot]):
            left += 1
        # 피벗보다 작은 데이터를 찾을 때까지 반복
        while(right > start and array[right] >= array[pivot]):
            right -= 1
        if(left > right): # 엇갈렸다면 작은 데이터와 피벗을 교체
            array[right], array[pivot] = array[pivot], array[right]
        else: # 엇갈리지 않았다면 작은 데이터와 큰 데이터를 교체
            array[left], array[right] = array[right], array[left]
    # 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬 수행
    quick_sort(array, start, right - 1)
    quick_sort(array, right + 1, end)

quick_sort(array, 0, len(array) - 1)
print(array)

실행 결과

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

퀵 정렬 소스코드: 일반적인 방식 (Java)

import java.util.*;

public class Main {

    public static void quickSort(int[] arr, int start, int end) {
        if (start >= end) return; // 원소가 1개인 경우 종료
        int pivot = start; // 피벗은 첫 번째 원소
        int left = start + 1;
        int right = end;
        while (left <= right) {
            // 피벗보다 큰 데이터를 찾을 때까지 반복
            while (left <= end && arr[left] <= arr[pivot]) left++;
            // 피벗보다 작은 데이터를 찾을 때까지 반복
            while (right > start && arr[right] >= arr[pivot]) right--;
            // 엇갈렸다면 작은 데이터와 피벗을 교체
            if (left > right) {
                int temp = arr[pivot];
                arr[pivot] = arr[right];
                arr[right] = temp;
            }
            // 엇갈리지 않았다면 작은 데이터와 큰 데이터를 교체
            else {
                int temp = arr[left];
                arr[left] = arr[right];
                arr[right] = temp;
            }
        }
        // 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬 수행
        quickSort(arr, start, right - 1);
        quickSort(arr, right + 1, end);
    }

    public static void main(String[] args) {
        int n = 10;
        int[] arr = {7, 5, 9, 0, 3, 1, 6, 2, 4, 8};

        quickSort(arr, 0, n - 1);

        for(int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
    }

}

실행 결과

0 1 2 3 4 5 6 7 8 9

퀵 정렬 소스코드: 파이썬의 장점을 살린 방식

array = [5, 7, 9, 0, 3, 1, 6, 2, 4, 8]

def quick_sort(array):
    # 리스트가 하나 이하의 원소만을 담고 있다면 종료
    if len(array) <= 1:
        return array

    pivot = array[0] # 피벗은 첫 번째 원소
    tail = array[1:] # 피벗을 제외한 리스트

    left_side = [x for x in tail if x <= pivot] # 분할된 왼쪽 부분
    right_side = [x for x in tail if x > pivot] # 분할된 오른쪽 부분

    # 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬을 수행하고, 전체 리스트를 반환
    return quick_sort(left_side) + [pivot] + quick_sort(right_side)

print(quick_sort(array))

실행 결과

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
728x90