CodingTest

[이것이 코딩 테스트다 with Python] 35강 크루스칼 알고리즘

nineDeveloper 2021. 1. 4.
728x90

https://www.youtube.com/watch?v=Gj7s-Nrt1xE&list=PLVsNizTWUw7H9_of5YCB0FmsSc-K44y81&index=35

 

신장 트리

  • 그래프에서 모든 노드를 포함하면서 사이클이 존재하지 않는 부분 그래프를 의미한다
    • 모든 노드가 포함되어 서로 연결되면서 사이클이 존재하지 않는다는 조건은 트리의 조건이기도 하다


최소 신장 트리

  • 최소한의 비용으로 구성되는 신장 트리를 찾아야 할 때 어떻게 해야 할까?
  • 예를 들어 N개의 도시가 존재하는 상황에서 두 도시 사이에 도로를 놓아 전체 도시가 서로 연결될 수 있게
    도로를 설치하는 경우를 생각해 보자
    • 두 도시 A,B를 선택했을 때 A에서 B로 이동하는 경로가 반드시 존재하도록 도로를 설치한다


크루스칼 알고리즘

  • 대표적인 최소 신장 트리 알고리즘이다
  • 그리디 알고리즘으로 분류된다
  • 구체적인 동작 과정은 다음과 같다
    1. 간선 데이터를 비용에 따라 오름차순으로 정렬한다
    2. 간선을 하나씩 확인하며 현재의 간선이 사이클을 발생시키는지 확인한다
      1. 사이클이 발생하지 않는 경우 최소 신장 트리에 포함시킨다
      2. 사이클이 발생하는 경우 최소 신장 트리에 포함시키지 않는다
    3. 모든 간선에 대하여 2번의 과정을 반복한다

크루스칼 알고리즘: 동작 과정 살펴보기

  • [초기 단계] 그래프의 모든 간선 정보에 대하여 오름차순 정렬을 수행한다

  • [Step 1] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (3,4)를 선택하여 처리한다

  • [Step 2] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (4,7)을 선택하여 처리한다

  • [Step 3] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (4,6)을 선택하여 처리한다

  • [Step 4] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (6,7)을 선택하여 처리한다

  • [Step 5] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (1,2)를 선택하여 처리한다

  • [Step 6] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (2,6)을 선택하여 처리한다

  • [Step 7] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (2,3)을 선택하여 처리한다

  • [Step 8] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (5,6)을 선택하여 처리한다

  • [Step 9] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (1,5)를 선택하여 처리한다

  • [알고리즘 수행 결과]
    • 최소 신장 트리에 포함되어 있는 간선의 비용만 모두 더하면, 그 값이 최종 비용에 해당한다


크루스칼 알고리즘 (Python)

# 특정 원소가 속한 집합을 찾기
def find_parent(parent, x):
    # 루트 노드가 아니라면, 루트 노드를 찾을 때까지 재귀적으로 호출
    if parent[x] != x:
        parent[x] = find_parent(parent, parent[x])
    return parent[x]

# 두 원소가 속한 집합을 합치기
def union_parent(parent, a, b):
    a = find_parent(parent, a)
    b = find_parent(parent, b)
    if a < b:
        parent[b] = a
    else:
        parent[a] = b

# 노드의 개수와 간선(Union 연산)의 개수 입력 받기
v, e = map(int, input().split())
parent = [0] * (v + 1) # 부모 테이블 초기화하기

# 모든 간선을 담을 리스트와, 최종 비용을 담을 변수
edges = []
result = 0

# 부모 테이블상에서, 부모를 자기 자신으로 초기화
for i in range(1, v + 1):
    parent[i] = i

# 모든 간선에 대한 정보를 입력 받기
for _ in range(e):
    a, b, cost = map(int, input().split())
    # 비용순으로 정렬하기 위해서 튜플의 첫 번째 원소를 비용으로 설정
    edges.append((cost, a, b))

# 간선을 비용순으로 정렬
edges.sort()

# 간선을 하나씩 확인하며
for edge in edges:
    cost, a, b = edge
    # 사이클이 발생하지 않는 경우에만 집합에 포함
    if find_parent(parent, a) != find_parent(parent, b):
        union_parent(parent, a, b)
        result += cost

print(result)

크루스칼 알고리즘 (Java)

import java.util.*;

public class Main {

    // 노드의 개수(V)와 간선의 개수(E)
    // 노드의 개수는 최대 100,000개라고 가정
    public static int v, e;
    // 모든 노드에 대한 진입차수는 0으로 초기화
    public static int[] indegree = new int[100001];
    // 각 노드에 연결된 간선 정보를 담기 위한 연결 리스트 초기화
    public static ArrayList<ArrayList<Integer>> graph = new ArrayList<ArrayList<Integer>>();

    // 위상 정렬 함수
    public static void topologySort() {
        ArrayList<Integer> result = new ArrayList<>(); // 알고리즘 수행 결과를 담을 리스트
        Queue<Integer> q = new LinkedList<>(); // 큐 라이브러리 사용

        // 처음 시작할 때는 진입차수가 0인 노드를 큐에 삽입
        for (int i = 1; i <= v; i++) {
            if (indegree[i] == 0) {
                q.offer(i);
            }
        }

        // 큐가 빌 때까지 반복
        while (!q.isEmpty()) {
            // 큐에서 원소 꺼내기
            int now = q.poll();
            result.add(now);
            // 해당 원소와 연결된 노드들의 진입차수에서 1 빼기
            for (int i = 0; i < graph.get(now).size(); i++) {
                indegree[graph.get(now).get(i)] -= 1;
                // 새롭게 진입차수가 0이 되는 노드를 큐에 삽입
                if (indegree[graph.get(now).get(i)] == 0) {
                    q.offer(graph.get(now).get(i));
                }
            }
        }

        // 위상 정렬을 수행한 결과 출력
        for (int i = 0; i < result.size(); i++) {
            System.out.print(result.get(i) + " ");
        }
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);

        v = sc.nextInt();
        e = sc.nextInt();

        // 그래프 초기화
        for (int i = 0; i <= v; i++) {
            graph.add(new ArrayList<Integer>());
        }

        // 방향 그래프의 모든 간선 정보를 입력 받기
        for (int i = 0; i < e; i++) {
            int a = sc.nextInt();
            int b = sc.nextInt();
            graph.get(a).add(b); // 정점 A에서 B로 이동 가능
            // 진입 차수를 1 증가
            indegree[b] += 1;
        }

        topologySort();
    }
}

크루스칼 알고리즘 성능 분석

  • 크루스칼 알고리즘은 간선의 개수가 E개일 때, O(ElogE) 의 시간 복잡도를 가진다
  • 크루스칼 알고리즘에서 가장 많은 시간을 요구하는 곳은 간선의 정렬을 수행하는 부분이다
    • 표준 라이브러리를 이용해 𝐸개의 데이터를 정렬하기 위한 시간 복잡도는 O(ElogE) 이다
728x90

댓글

💲 추천 글