728x90
https://www.youtube.com/watch?v=Gj7s-Nrt1xE&list=PLVsNizTWUw7H9_of5YCB0FmsSc-K44y81&index=35
신장 트리
- 그래프에서 모든 노드를 포함하면서 사이클이 존재하지 않는 부분 그래프를 의미한다
- 모든 노드가 포함되어 서로 연결되면서 사이클이 존재하지 않는다는 조건은 트리의 조건이기도 하다
최소 신장 트리
- 최소한의 비용으로 구성되는 신장 트리를 찾아야 할 때 어떻게 해야 할까?
- 예를 들어 N개의 도시가 존재하는 상황에서 두 도시 사이에 도로를 놓아 전체 도시가 서로 연결될 수 있게
도로를 설치하는 경우를 생각해 보자- 두 도시 A,B를 선택했을 때 A에서 B로 이동하는 경로가 반드시 존재하도록 도로를 설치한다
크루스칼 알고리즘
- 대표적인 최소 신장 트리 알고리즘이다
- 그리디 알고리즘으로 분류된다
- 구체적인 동작 과정은 다음과 같다
- 간선 데이터를 비용에 따라 오름차순으로 정렬한다
- 간선을 하나씩 확인하며 현재의 간선이 사이클을 발생시키는지 확인한다
- 사이클이 발생하지 않는 경우 최소 신장 트리에 포함시킨다
- 사이클이 발생하는 경우 최소 신장 트리에 포함시키지 않는다
- 모든 간선에 대하여 2번의 과정을 반복한다
크루스칼 알고리즘: 동작 과정 살펴보기
- [초기 단계] 그래프의 모든 간선 정보에 대하여 오름차순 정렬을 수행한다
- [Step 1] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (3,4)를 선택하여 처리한다
- [Step 2] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (4,7)을 선택하여 처리한다
- [Step 3] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (4,6)을 선택하여 처리한다
- [Step 4] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (6,7)을 선택하여 처리한다
- [Step 5] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (1,2)를 선택하여 처리한다
- [Step 6] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (2,6)을 선택하여 처리한다
- [Step 7] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (2,3)을 선택하여 처리한다
- [Step 8] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (5,6)을 선택하여 처리한다
- [Step 9] 아직 처리하지 않은 간선 중에서 가장 짧은 간선인 (1,5)를 선택하여 처리한다
- [알고리즘 수행 결과]
- 최소 신장 트리에 포함되어 있는 간선의 비용만 모두 더하면, 그 값이 최종 비용에 해당한다
크루스칼 알고리즘 (Python)
# 특정 원소가 속한 집합을 찾기
def find_parent(parent, x):
# 루트 노드가 아니라면, 루트 노드를 찾을 때까지 재귀적으로 호출
if parent[x] != x:
parent[x] = find_parent(parent, parent[x])
return parent[x]
# 두 원소가 속한 집합을 합치기
def union_parent(parent, a, b):
a = find_parent(parent, a)
b = find_parent(parent, b)
if a < b:
parent[b] = a
else:
parent[a] = b
# 노드의 개수와 간선(Union 연산)의 개수 입력 받기
v, e = map(int, input().split())
parent = [0] * (v + 1) # 부모 테이블 초기화하기
# 모든 간선을 담을 리스트와, 최종 비용을 담을 변수
edges = []
result = 0
# 부모 테이블상에서, 부모를 자기 자신으로 초기화
for i in range(1, v + 1):
parent[i] = i
# 모든 간선에 대한 정보를 입력 받기
for _ in range(e):
a, b, cost = map(int, input().split())
# 비용순으로 정렬하기 위해서 튜플의 첫 번째 원소를 비용으로 설정
edges.append((cost, a, b))
# 간선을 비용순으로 정렬
edges.sort()
# 간선을 하나씩 확인하며
for edge in edges:
cost, a, b = edge
# 사이클이 발생하지 않는 경우에만 집합에 포함
if find_parent(parent, a) != find_parent(parent, b):
union_parent(parent, a, b)
result += cost
print(result)
크루스칼 알고리즘 (Java)
import java.util.*;
public class Main {
// 노드의 개수(V)와 간선의 개수(E)
// 노드의 개수는 최대 100,000개라고 가정
public static int v, e;
// 모든 노드에 대한 진입차수는 0으로 초기화
public static int[] indegree = new int[100001];
// 각 노드에 연결된 간선 정보를 담기 위한 연결 리스트 초기화
public static ArrayList<ArrayList<Integer>> graph = new ArrayList<ArrayList<Integer>>();
// 위상 정렬 함수
public static void topologySort() {
ArrayList<Integer> result = new ArrayList<>(); // 알고리즘 수행 결과를 담을 리스트
Queue<Integer> q = new LinkedList<>(); // 큐 라이브러리 사용
// 처음 시작할 때는 진입차수가 0인 노드를 큐에 삽입
for (int i = 1; i <= v; i++) {
if (indegree[i] == 0) {
q.offer(i);
}
}
// 큐가 빌 때까지 반복
while (!q.isEmpty()) {
// 큐에서 원소 꺼내기
int now = q.poll();
result.add(now);
// 해당 원소와 연결된 노드들의 진입차수에서 1 빼기
for (int i = 0; i < graph.get(now).size(); i++) {
indegree[graph.get(now).get(i)] -= 1;
// 새롭게 진입차수가 0이 되는 노드를 큐에 삽입
if (indegree[graph.get(now).get(i)] == 0) {
q.offer(graph.get(now).get(i));
}
}
}
// 위상 정렬을 수행한 결과 출력
for (int i = 0; i < result.size(); i++) {
System.out.print(result.get(i) + " ");
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
v = sc.nextInt();
e = sc.nextInt();
// 그래프 초기화
for (int i = 0; i <= v; i++) {
graph.add(new ArrayList<Integer>());
}
// 방향 그래프의 모든 간선 정보를 입력 받기
for (int i = 0; i < e; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
graph.get(a).add(b); // 정점 A에서 B로 이동 가능
// 진입 차수를 1 증가
indegree[b] += 1;
}
topologySort();
}
}
크루스칼 알고리즘 성능 분석
- 크루스칼 알고리즘은 간선의 개수가 E개일 때, O(ElogE) 의 시간 복잡도를 가진다
- 크루스칼 알고리즘에서 가장 많은 시간을 요구하는 곳은 간선의 정렬을 수행하는 부분이다
- 표준 라이브러리를 이용해 𝐸개의 데이터를 정렬하기 위한 시간 복잡도는 O(ElogE) 이다
728x90
'CodingTest' 카테고리의 다른 글
[이것이 코딩 테스트다 with Python] 37강 소수 판별 알고리즘 (0) | 2021.01.04 |
---|---|
[이것이 코딩 테스트다 with Python] 36강 위상 정렬 (0) | 2021.01.04 |
[이것이 코딩 테스트다 with Python] 34강 서로소 집합을 활용한 사이클 판별 (0) | 2021.01.04 |
[이것이 코딩 테스트다 with Python] 33강 서로소 집합 자료구조 (0) | 2021.01.04 |
[이것이 코딩 테스트다 with Python] 32강 최단 경로 알고리즘 기초 문제 풀이 (0) | 2021.01.04 |
댓글