CodingTest

[이것이 코딩 테스트다 with Python] 31강 플로이드 워셜 알고리즘

nineDeveloper 2021. 1. 4.
728x90

https://www.youtube.com/watch?v=hw-SvAR3Zqg&list=PLVsNizTWUw7H9_of5YCB0FmsSc-K44y81&index=31

 

플로이드 워셜 알고리즘 개요

  • 모든 노드에서 다른 모든 노드까지의 최단 경로를 모두 계산한다

  • 플로이드 워셜(Floyd-Warshall) 알고리즘은 다익스트라 알고리즘과 마찬가지로 단계별로 거쳐 가는 노드를
    기준으로 알고리즘을 수행
    한다

    • 다만 매 단계마다 방문하지 않은 노드 중에 최단 거리를 갖는 노드를 찾는 과정이 필요하지 않다
  • 플로이드 워셜은 2차원 테이블에 최단 거리 정보를 저장한다

  • 플로이드 워셜 알고리즘은 다이나믹 프로그래밍 유형에 속한다

  • 각 단계마다 특정한 노드 𝑘를 거쳐 가는 경우를 확인한다

    • 𝑎에서 𝑏로 가는 최단 거리보다 𝑎에서 𝑘를 거쳐 𝑏로 가는 거리가 더 짧은지 검사한다
  • 점화식은 다음과 같다


플로이드 워셜 알고리즘: 동작 과정 살펴보기

  • [초기 상태] 그래프를 준비하고 최단 거리 테이블을 초기화한다

  • [Step 1] 1번 노드를 거쳐 가는 경우를 고려하여 테이블을 갱신한다

  • [Step 2] 2번 노드를 거쳐 가는 경우를 고려하여 테이블을 갱신한다

  • [Step 3] 3번 노드를 거쳐 가는 경우를 고려하여 테이블을 갱신한다

  • [Step 4] 4번 노드를 거쳐 가는 경우를 고려하여 테이블을 갱신한다


플로이드 워셜 알고리즘 (Python)

INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수 및 간선의 개수를 입력받기
n = int(input())
m = int(input())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]

# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0

# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
    # A에서 B로 가는 비용은 C라고 설정
    a, b, c = map(int, input().split())
    graph[a][b] = c

# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

# 수행된 결과를 출력
for a in range(1, n + 1):
    for b in range(1, n + 1):
        # 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
        if graph[a][b] == 1e9:
            print("INFINITY", end=" ")
        # 도달할 수 있는 경우 거리를 출력
        else:
            print(graph[a][b], end=" ")
    print()

플로이드 워셜 알고리즘 (Java)

import java.util.*;

public class Main {

    public static final int INF = (int) 1e9; // 무한을 의미하는 값으로 10억을 설정
    // 노드의 개수(N), 간선의 개수(M)
    // 노드의 개수는 최대 500개라고 가정
    public static int n, m;
    // 2차원 배열(그래프 표현)를 만들기
    public static int[][] graph = new int[501][501];

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);

        n = sc.nextInt();
        m = sc.nextInt();

        // 최단 거리 테이블을 모두 무한으로 초기화
        for (int i = 0; i < 501; i++) {
            Arrays.fill(graph[i], INF);
        }

        // 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
        for (int a = 1; a <= n; a++) {
            for (int b = 1; b <= n; b++) {
                if (a == b) graph[a][b] = 0;
            }
        }

        // 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
        for (int i = 0; i < m; i++) {
            // A에서 B로 가는 비용은 C라고 설정
            int a = sc.nextInt();
            int b = sc.nextInt();
            int c = sc.nextInt();
            graph[a][b] = c;
        }

        // 점화식에 따라 플로이드 워셜 알고리즘을 수행
        for (int k = 1; k <= n; k++) {
            for (int a = 1; a <= n; a++) {
                for (int b = 1; b <= n; b++) {
                    graph[a][b] = Math.min(graph[a][b], graph[a][k] + graph[k][b]);
                }
            }
        }

        // 수행된 결과를 출력
        for (int a = 1; a <= n; a++) {
            for (int b = 1; b <= n; b++) {
                // 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
                if (graph[a][b] == INF) {
                    System.out.print("INFINITY ");
                }
                // 도달할 수 있는 경우 거리를 출력
                else {
                    System.out.print(graph[a][b] + " ");
                }
            }
            System.out.println();
        }
    }
}

 


플로이드 워셜 알고리즘 성능 분석

  • 노드의 개수가 𝑁개일 때 알고리즘상으로 𝑁번의 단계를 수행한다
    • 각 단계마다 O(N²) 의 연산을 통해 현재 노드를 거쳐 가는 모든 경로를 고려한다
  • 따라서 플로이드 워셜 알고리즘의 총 시간 복잡도는 O(N³) 이다
728x90

댓글

💲 추천 글