728x90
https://www.youtube.com/watch?v=F-tkqjUiik0&list=PLVsNizTWUw7H9_of5YCB0FmsSc-K44y81&index=30
다익스트라 최단 경로 알고리즘
최단 경로 문제
- 최단 경로 알고리즘은 가장 짧은 경로를 찾는 알고리즘을 의미함
- 다양한 문제 상황
- 한 지점에서 다른 한 지점까지의 최단 경로
- 한 지점에서 다른 모든 지점까지의 최단 경로
- 모든 지점에서 다른 모든 지점까지의 최단 경로
- 각 지점은 그래프에서 노드로 표현
- 지점 간 연결된 도로는 그래프에서 간선으로 표현
다익스트라 최단 경로 알고리즘 개요
- 특정한 노드에서 출발하여 다른 모든 노드로 가는 최단 경로를 계산한다
- 다익스트라 최단 경로 알고리즘은 음의 간선이 없을 때 정상적으로 동작한다
- 현실 세계의 도로(간선)은 음의 간선으로 표현되지 않습니다
- 다익스트라 최단 경로 알고리즘은 그리디 알고리즘으로 분류된다
- 매 상황에서 가장 비용이 적은 노드를 선택해 임의의 과정을 반복한다
다익스트라 최단 경로 알고리즘
-
알고리즘의 동작 과정은 다음과 같다
- 출발 노드를 설정한다
- 최단 거리 테이블을 초기화한다
- 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택한다
- 해당 노드를 거쳐 다른 노드로 가는 비용을 계산하여 최단 거리 테이블을 갱신한다
- 위 과정에서 3번과 4번을 반복한다
-
알고리즘 동작 과정에서 최단 거리 테이블은 각 노드에 대한 현재까지의 최단 거리 정보를 가지고 있다
-
처리 과정에서 더 짧은 경로를 찾으면 '이제부터는 이 경로가 제일 짧은 경로야'라고 갱신한다
다익스트라 최단 경로 알고리즘: 동작 과정 살펴보기
- [초기 상태] 그래프를 준비하고 출발 노드를 설정한다
- [Step 1] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 1번 노드를 처리한다
- [Step 2] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 4번 노드를 처리한다
- [Step 3] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 2번 노드를 처리한다
- [Step 4] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 5번 노드를 처리한다
- [Step 5] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 3번 노드를 처리한다
- [Step 6] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 6번 노드를 처리한다
다익스트라 알고리즘의 특징
- 그리디 알고리즘: 매 상황에서 방문하지 않은 가장 비용이 적은 노드를 선택해 임의의 과정을 반복한다
- 단계를 거치며 한 번 처리된 노드의 최단 거리는 고정되어 더 이상 바뀌지 않는다
- 한 단계당 하나의 노드에 대한 최단 거리를 확실히 찾는 것으로 이해할 수 있다
- 다익스트라 알고리즘을 수행한 뒤에 테이블에 각 노드까지의 최단 거리 정보가 저장된다
- 완벽한 형태의 최단 경로를 구하려면 소스코드에 추가적인 기능을 더 넣어야 한다
다익스트라 알고리즘: 간단한 구현 방법
- 단계마다 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택하기 위해 매 단계마다 1차원 테이블의
모든 원소를 확인(순차 탐색)한다
다익스트라 알고리즘: 간단한 구현 방법 (Python)
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 방문한 적이 있는지 체크하는 목적의 리스트를 만들기
visited = [False] * (n + 1)
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
# 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
def get_smallest_node():
min_value = INF
index = 0 # 가장 최단 거리가 짧은 노드(인덱스)
for i in range(1, n + 1):
if distance[i] < min_value and not visited[i]:
min_value = distance[i]
index = i
return index
def dijkstra(start):
# 시작 노드에 대해서 초기화
distance[start] = 0
visited[start] = True
for j in graph[start]:
distance[j[0]] = j[1]
# 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for i in range(n - 1):
# 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
now = get_smallest_node()
visited[now] = True
# 현재 노드와 연결된 다른 노드를 확인
for j in graph[now]:
cost = distance[now] + j[1]
# 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[j[0]]:
distance[j[0]] = cost
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
다익스트라 알고리즘: 간단한 구현 방법 (Java)
import java.util.*;
class Node {
private int index;
private int distance;
public Node(int index, int distance) {
this.index = index;
this.distance = distance;
}
public int getIndex() {
return this.index;
}
public int getDistance() {
return this.distance;
}
}
public class Main {
public static final int INF = (int) 1e9; // 무한을 의미하는 값으로 10억을 설정
// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
// 노드의 개수는 최대 100,000개라고 가정
public static int n, m, start;
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
public static ArrayList<ArrayList<Node>> graph = new ArrayList<ArrayList<Node>>();
// 방문한 적이 있는지 체크하는 목적의 배열 만들기
public static boolean[] visited = new boolean[100001];
// 최단 거리 테이블 만들기
public static int[] d = new int[100001];
// 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
public static int getSmallestNode() {
int min_value = INF;
int index = 0; // 가장 최단 거리가 짧은 노드(인덱스)
for (int i = 1; i <= n; i++) {
if (d[i] < min_value && !visited[i]) {
min_value = d[i];
index = i;
}
}
return index;
}
public static void dijkstra(int start) {
// 시작 노드에 대해서 초기화
d[start] = 0;
visited[start] = true;
for (int j = 0; j < graph.get(start).size(); j++) {
d[graph.get(start).get(j).getIndex()] = graph.get(start).get(j).getDistance();
}
// 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
for (int i = 0; i < n - 1; i++) {
// 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
int now = getSmallestNode();
visited[now] = true;
// 현재 노드와 연결된 다른 노드를 확인
for (int j = 0; j < graph.get(now).size(); j++) {
int cost = d[now] + graph.get(now).get(j).getDistance();
// 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
if (cost < d[graph.get(now).get(j).getIndex()]) {
d[graph.get(now).get(j).getIndex()] = cost;
}
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
start = sc.nextInt();
// 그래프 초기화
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<Node>());
}
// 모든 간선 정보를 입력받기
for (int i = 0; i < m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
// a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph.get(a).add(new Node(b, c));
}
// 최단 거리 테이블을 모두 무한으로 초기화
Arrays.fill(d, INF);
// 다익스트라 알고리즘을 수행
dijkstra(start);
// 모든 노드로 가기 위한 최단 거리를 출력
for (int i = 1; i <= n; i++) {
// 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if (d[i] == INF) {
System.out.println("INFINITY");
}
// 도달할 수 있는 경우 거리를 출력
else {
System.out.println(d[i]);
}
}
}
}
다익스트라 알고리즘: 간단한 구현 방법 성능 분석
- 총 O(V) 번에 걸쳐서 최단 거리가 가장 짧은 노드를 매번 선형 탐색해야 한다
- 따라서 전체 시간 복잡도는 O(V²) 이다
- 일반적으로 코딩 테스트의 최단 경로 문제에서 전체 노드의 개수가 5,000개 이하라면 이 코드로 문제를
해결할 수 있다- 하지만 노드의 개수가 10,000개를 넘어가는 문제라면 어떻게 해야 할까?
우선순위 큐(Priority Queue)
- 우선순위가 가장 높은 데이터를 가장 먼저 삭제하는 자료구조이다
- 예를 들어 여러 개의 물건 데이터를 자료구조에 넣었다가 높은 물건 데이터부터 꺼내서 확인해야하는
경우에 우선순위 큐를 이용할 수 있다 - Python, C++, Java를 포함한 대부분의 프로그래밍 언어에서 표준 라이브러리 형태로 지원한다
자료구조 | 추출되는 데이터 |
---|---|
스택(Stack) | 가장 나중에 삽입된 데이터 |
큐(Queue) | 가장 먼저 삽입된 데이터 |
우선순위 큐(Priority Queue) | 가장 우선순위가 높은 데이터 |
힙(Heap)
- 우선순위 큐(Priority Queue)를 구현하기 위해 사용하는 자료구조 중 하나이다
- 최소 힙(Min Heap) 과 최대 힙(Max Heap) 이 있다
- 다익스트라 최단 경로 알고리즘을 포함해 다양한 알고리즘에서 사용된다
우선순위 큐 구현 방식 | 삽입 시간 | 삭제 시간 |
---|---|---|
리스트 | O(1) | O(N) |
힙(Heap) | O(logN) | O(logN) |
힙 라이브러리 사용 예제: 최소 힙
import heapq
# 오름차순 힙 정렬(Heap Sort)
def heapsort(iterable):
h = []
result = []
# 모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, value)
# 힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result)
실행 결과
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
힙 라이브러리 사용 예제: 최대 힙
import heapq
# 오름차순 힙 정렬(Heap Sort)
def heapsort(iterable):
h = []
result = []
# 모든 원소를 차례대로 힙에 삽입
for value in iterable:
heapq.heappush(h, -value)
# 힙에 삽입된 모든 원소를 차례대로 꺼내어 담기
for i in range(len(h)):
result.append(-heapq.heappop(h))
return result
result = heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
print(result)
실행 결과
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
다익스트라 알고리즘: 개선된 구현 방법
- 단계마다 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택하기 위해 힙(Heap) 자료구조를 이용한다
- 다익스트라 알고리즘이 동작하는 기본 원리는 동일하다
- 현재 가장 가까운 노드를 저장해 놓기 위해서 힙 자료구조를 추가적으로 이용한다는 점이 다르다
- 현재의 최단 거리가 가장 짧은 노드를 선택해야 하므로 최소 힙을 사용한다
다익스트라 알고리즘: 동장 과정 살펴보기 (우선순위 큐)
- [초기 상태] 그래프를 준비하고 출발 노드를 설정하여 우선순위 큐에 삽입한다
- [Step 1] 우선순위 큐에서 원소를 꺼낸다 1번 노드는 아직 방문하지 않았으므로 이를 처리한다
- [Step 2] 우선순위 큐에서 원소를 꺼낸다 4번 노드는 아직 방문하지 않았으므로 이를 처리한다
- [Step 3] 우선순위 큐에서 원소를 꺼낸다 2번 노드는 아직 방문하지 않았으므로 이를 처리한다
- [Step 4] 우선순위 큐에서 원소를 꺼낸다 5번 노드는 아직 방문하지 않았으므로 이를 처리한다
- [Step 5] 우선순위 큐에서 원소를 꺼낸다 3번 노드는 아직 방문하지 않았으므로 이를 처리한다
- [Step 6] 우선순위 큐에서 원소를 꺼낸다 3번 노드는 이미 방문했으므로 무시한다
- [Step 7] 우선순위 큐에서 원소를 꺼낸다 6번 노드는 아직 방문하지 않았으므로 이를 처리한다
- [Step 8] 우선순위 큐에서 원소를 꺼낸다 3번 노드는 이미 방문했으므로 무시한다
다익스트라 알고리즘: 개선된 구현 방법 (Python)
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정
# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)
# 모든 간선 정보를 입력받기
for _ in range(m):
a, b, c = map(int, input().split())
# a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph[a].append((b, c))
def dijkstra(start):
q = []
# 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
heapq.heappush(q, (0, start))
distance[start] = 0
while q: # 큐가 비어있지 않다면
# 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
dist, now = heapq.heappop(q)
# 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if distance[now] < dist:
continue
# 현재 노드와 연결된 다른 인접한 노드들을 확인
for i in graph[now]:
cost = dist + i[1]
# 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if cost < distance[i[0]]:
distance[i[0]] = cost
heapq.heappush(q, (cost, i[0]))
# 다익스트라 알고리즘을 수행
dijkstra(start)
# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
# 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if distance[i] == INF:
print("INFINITY")
# 도달할 수 있는 경우 거리를 출력
else:
print(distance[i])
다익스트라 알고리즘: 개선된 구현 방법 (Java)
import java.util.*;
class Node implements Comparable<Node> {
private int index;
private int distance;
public Node(int index, int distance) {
this.index = index;
this.distance = distance;
}
public int getIndex() {
return this.index;
}
public int getDistance() {
return this.distance;
}
// 거리(비용)가 짧은 것이 높은 우선순위를 가지도록 설정
@Override
public int compareTo(Node other) {
if (this.distance < other.distance) {
return -1;
}
return 1;
}
}
public class Main {
public static final int INF = (int) 1e9; // 무한을 의미하는 값으로 10억을 설정
// 노드의 개수(N), 간선의 개수(M), 시작 노드 번호(Start)
// 노드의 개수는 최대 100,000개라고 가정
public static int n, m, start;
// 각 노드에 연결되어 있는 노드에 대한 정보를 담는 배열
public static ArrayList<ArrayList<Node>> graph = new ArrayList<ArrayList<Node>>();
// 최단 거리 테이블 만들기
public static int[] d = new int[100001];
public static void dijkstra(int start) {
PriorityQueue<Node> pq = new PriorityQueue<>();
// 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
pq.offer(new Node(start, 0));
d[start] = 0;
while(!pq.isEmpty()) { // 큐가 비어있지 않다면
// 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
Node node = pq.poll();
int dist = node.getDistance(); // 현재 노드까지의 비용
int now = node.getIndex(); // 현재 노드
// 현재 노드가 이미 처리된 적이 있는 노드라면 무시
if (d[now] < dist) continue;
// 현재 노드와 연결된 다른 인접한 노드들을 확인
for (int i = 0; i < graph.get(now).size(); i++) {
int cost = d[now] + graph.get(now).get(i).getDistance();
// 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
if (cost < d[graph.get(now).get(i).getIndex()]) {
d[graph.get(now).get(i).getIndex()] = cost;
pq.offer(new Node(graph.get(now).get(i).getIndex(), cost));
}
}
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
start = sc.nextInt();
// 그래프 초기화
for (int i = 0; i <= n; i++) {
graph.add(new ArrayList<Node>());
}
// 모든 간선 정보를 입력받기
for (int i = 0; i < m; i++) {
int a = sc.nextInt();
int b = sc.nextInt();
int c = sc.nextInt();
// a번 노드에서 b번 노드로 가는 비용이 c라는 의미
graph.get(a).add(new Node(b, c));
}
// 최단 거리 테이블을 모두 무한으로 초기화
Arrays.fill(d, INF);
// 다익스트라 알고리즘을 수행
dijkstra(start);
// 모든 노드로 가기 위한 최단 거리를 출력
for (int i = 1; i <= n; i++) {
// 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
if (d[i] == INF) {
System.out.println("INFINITY");
}
// 도달할 수 있는 경우 거리를 출력
else {
System.out.println(d[i]);
}
}
}
}
다익스트라 알고리즘: 개선된 구현 방법 성능 분석
- 힙 자료구조를 이용하는 다익스트라 알고리즘의 시간 복잡도는 O(ElogV) 이다
- 노드를 하나씩 꺼내 검사하는 반복문(while문)은 노드의 개수 V 이상의 횟수로는 처리되지 않는다
- 결과적으로 현재 우선순위 큐에서 꺼낸 노드와 연결된 다른 노드들을 확인하는 총횟수는 최대 간선의
갯수(E)만큼 연산이 수행될 수 있다
- 결과적으로 현재 우선순위 큐에서 꺼낸 노드와 연결된 다른 노드들을 확인하는 총횟수는 최대 간선의
- 직관적으로 전체 과정은 E개의 원소를 우선순위 큐에 넣었다가 모두 빼내는 연산과 매우 유사하다
- 시간 복잡도를 O(ElogE) 로 판단할 수 있다
- 중복 간선을 포함하지 않는 경우에 이를 O(ElogV) 로 정리할 수 있다
- O(ElogE) -> O(ElogV²) -> O(2ElogV) -> O(ElogV)
728x90
'CodingTest' 카테고리의 다른 글
[이것이 코딩 테스트다 with Python] 32강 최단 경로 알고리즘 기초 문제 풀이 (0) | 2021.01.04 |
---|---|
[이것이 코딩 테스트다 with Python] 31강 플로이드 워셜 알고리즘 (0) | 2021.01.04 |
[이것이 코딩 테스트다 with Python] 29강 다이나믹 프로그래밍 기초 문제 풀이 (0) | 2021.01.04 |
[이것이 코딩 테스트다 with Python] 28강 다이나믹 프로그래밍 개요 (0) | 2021.01.04 |
[이것이 코딩 테스트다 with Python] 27강 이진 탐색 기초 문제 풀이 (0) | 2021.01.04 |
댓글